Tutorial: Bayesian Mechanism Design

Shuchi Chawla & Jason Hartline U.Wisc-Madison Northwestern U.

June 5, 2011

Mechanism Design

Basic question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Internet applications: file sharing, reputation systems, web search, web advertising, email, Internet auctions, congestion control, etc.

General theme: resource allocation

Overview

Part 1: Intro to Bayesian Mechanism Design

- Classical mechanisms: First-price auction, Vickrey auction, Myerson's auction
- Focus on single-item auction
- Objective 1: Social welfare
- Objective 2: Revenue
- Generalize beyond single-item setting

Part 2 (after break): Recent results in Algorithmic BMD

Problem: single-item auction

Given:

- One item for sale
- *n* agents/bidders with unknown private values v_1, \ldots, v_n
- Agents' objective: max utility = value obtained price paid

Design goal:

• Protocol to solicit bids; choose winner and payment

Possible objectives:

- Maximize social surplus, i.e. value of the winner
- Maximize seller's revenue i.e. payment of the winner

Objective 1: Maximize social surplus

• Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

Example auctions

First-price auction

- 1. Solicit sealed bids
- 2. Highest bidder wins
- 3. Winner pays his bid

Example input: b = (2, 6, 4, 1)

Questions:

- What are the equilibrium strategies? Ο
- What is the equilibrium outcome? Ο
- Which one has higher surplus? Ο
- Which one has higher revenue? Ο

Second-price auction

- 1. Solicit sealed bids
- 2. Highest bidder wins
- 3. Winner pays secondhighest bid

Vickrey auction

Second-price auction: equilibrium analysis

Second-price auction

- 1. Solicit sealed bids 2. Highest bidder wins
- 3. Winner pays second-highest bid

How should agent *i* bid?

- Let $t_i = \max_{j \neq i} b_j$
- If $b_i \ge t_i$, *i* wins and pays t_i ; otherwise loses.

Result: Bidder *i*'s dominant strategy is to bid $b_i = v_i$

• Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

Second-price auction: conclusion

Second-price auction

- Solicit sealed bids 2. Highest bidder wins
 Winner pays second-highest bid

Lemma: [Vickrey'61] Truthful bidding is a dominant strategy in the second-price auction

Corollary: Second-price auction maximizes social surplus, i.e. value of the winner.

First-price auction: equilibrium analysis

First-price auction

- 1. Solicit sealed bids
- 2. Highest bidder wins
- 3. Winner pays his bid

How would you bid?

Note: first-price auction has no dominant strategy equilibrium

Bayes-Nash equilibrium

Defn: the *common prior assumption*: bidders' values are drawn from a known distribution, i.e., $v_i \sim F_i$

Notation:

- $F_i(z) = \Pr[v_i \le z]$ is the *cumulative distribution function*, (e.g. $F_i(z) = z$ for the uniform [0,1] distribution)
- $f_i(z) = dF_i(z)/dz$ is the *probability density function*, (e.g. $f_i(z) = 1$ for the uniform [0,1] distribution)

Defn: a *strategy* maps values to bids, i.e., $b_i = s_i(v_i)$

Defn: A strategy profile $(s_1, ..., s_n)$ is in *Bayes-Nash equilibrium* if for all *i*, $s_i(v_i)$ is a best response when others play $s_j(v_j)$ and $v_j \sim F_j$.

First-price auction: equilibrium analysis

Example: two bidders, values i.i.d. from U[0,1]

- Guess $s_i(z) = z/2$ is BNE and verify
- If agent 2 bids $b_2 \sim U[0,1/2]$, how should agent 1 bid?
- Compute agent 1's expected utility with bid b_1

$$E[u_{1}] = (v_{1} - b_{1}) \times \Pr[1 \text{ wins}]$$

= $(v_{1} - b_{1})2b_{1}$
= $2(v_{1}b_{1} - b_{1}^{2})$
$$Pr[b_{1} > b_{2}] = \Pr[b_{1} > v_{2}/2]$$

= $\Pr[2b_{1} > v_{2}] = F_{2}(2b_{1}) = 2b_{1}$

- To maximize, take derivative w.r.t. b_1 and set to zero; solve
- $b_1 = v_1/2$; guess is verified!

Conclusion: bidder with highest value wins, social surplus is maximized!

Surplus maximization conclusions

First-price auction

- 1. Solicit sealed bids
- 2. Highest bidder wins
- 3. Winner pays his bid

Second-price auction

- 1. Solicit sealed bids
- 2. Highest bidder wins
- 3. Winner pays secondhighest bid
- Second-price auction maximizes surplus in DSE regardless of distribution
- First-price auction maximizes surplus in BNE for i.i.d. distributions

Surprising result: the auctions are optimal for any distribution

Objective 2: Maximize seller's revenue

 \bullet \bullet \bullet

Other objectives are similar

• Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

An example

Example: two bidders, values i.i.d. from U[0,1]

What is the revenue of the second-price auction?

- Draw values v_1, v_2 from the unit interval
- Sort values: $v_1 \ge v_2$
- Values divide the unit line equally
- E[revenue of 2^{nd} price auction] = E[v_2] = 1/3

What is the revenue of the first-price auction?

• E[revenue of 1st price auction] = E[b_1] = E[v_1]/2 = 1/3

Surprising result: both have the same expected revenue!

Can we get more?

Second-price auction with reserve price

Second-price auction with reserve price r

- 0. Place seller bid at r
- 1. Solicit sealed bids 2. Highest bidder wins
- 3. Winner pays second-highest bid

Lemma: Second-price auction with reserve *r* has a truthful DSE

What is the revenue of this auction?

Example: second-price with reserve

Example: two bidders, values i.i.d. from U[0,1]

What is the revenue of second-price with reserve $\frac{1}{2}$?

- Draw values v_1, v_2 from unit interval
- Sort values: $v_1 \ge v_2$

Case analysis	Probability	E[revenue]
$v_2 \le v_1 < \frac{1}{2}$	1/4	0

 \circ E[Revenue of second-price with reserve $\frac{1}{2}$]

$$= \frac{1}{4} \cdot 0 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{2}{3} = \frac{5}{12} > \frac{1}{3} = E[\text{Revenue of second-price}]$$

Can we do even better?

Characterizing Bayes-Nash equilibria

• Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

June 6, 2011 • 17

Notation

- x denotes allocation, x_i the allocation for agent i
- x(v) is the BNE allocation of mechanism on values v, i.e., the mechanism's outcome composed with agents' BNE strategies
- $v_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n)$
- $x_i(v_i) = E_{v-i}[x_i(v_i, v_{-i})]$

is agent *i*'s interim prob. of allocation when $v_{-i} \sim F_{-i}$

- Analogously define $p, p(v), p_i(v_i)$ for payments
- Bidder *i* with value v_i mimicking strategy for value *z* has utility $u_i(v_i, z) = v_i x_i(z) p_i(z)$

BNE \implies for all *i*, v_i , and z, $u_i(v_i, v_i) \ge u_i(v_i, z)$

Characterization of BNE

Thm: a mechanism and strategy profile are in BNE iff

- 1. Monotonicity (M): $x_i(v_i)$ is monotone non-decreasing in v_i
- 2. Payment identity (PI): $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$ (Note: usually $p_i(0) = 0$.)

Characterization of BNE: proof outline

Thm: a mechanism and strategy profile are in BNE iff

- 1. Monotonicity (M): $x_i(v_i)$ is monotone non-decreasing in v_i
- 2. Payment identity (PI): $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$ (Note: usually $p_i(0) = 0$.)

Proof approach:

- 1. BNE \Rightarrow M
- 2. BNE \Rightarrow PI
- 3. BNE \leftarrow M & PI

$BNE \Longrightarrow M$

Recall: BNE \Rightarrow $u_i(v_i, v_i) \ge u_i(v_i, z)$ for all v_i and z

• Take $v_i = s$ and z = t and vice versa:

$$sx_i(s) - p_i(s) \ge sx_i(t) - p_i(t)$$
$$tx_i(t) - p_i(t) \ge tx_i(s) - p_i(s)$$

• Adding and regrouping:

$$sx_i(s) + tx_i(t) \ge sx_i(t) + tx_i(s)$$
$$\Rightarrow (s-t)x_i(s) \ge (s-t)x_i(t)$$

• So x_i is monotone non-decreasing: $s > t \Rightarrow x_i(s) \ge x_i(t)$

Characterization of BNE: proof outline

Thm: a mechanism and strategy profile are in BNE iff

- 1. Monotonicity (M): $x_i(v_i)$ is monotone non-decreasing in v_i
- 2. Payment identity (PI): $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$ (Note: usually $p_i(0) = 0$.)

Proof approach:

- 1. BNE \Rightarrow M
- 2. BNE \Rightarrow PI
- 3. BNE \leftarrow M & PI

$BNE \Longrightarrow PI$

Recall: BNE \Rightarrow For all s and t:

$$sx_i(s) - p_i(s) \ge sx_i(t) - p_i(t)$$
$$tx_i(t) - p_i(t) \ge tx_i(s) - p_i(s)$$

• Rearranging:

 $t(x_i(s) - x_i(t)) \le p_i(s) - p_i(t) \le s(x_i(s) - x_i(t))$

• Putting inequalities together for all pairs s and t implies PI

Characterization of BNE: proof outline

Thm: a mechanism and strategy profile are in BNE iff

- 1. Monotonicity (M): $x_i(v_i)$ is monotone non-decreasing in v_i
- 2. Payment identity (PI): $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$ (Note: usually $p_i(0) = 0$.)

Proof approach:

- 1. BNE \Rightarrow M
- 2. BNE \Rightarrow PI
- 3. BNE \leftarrow M & PI

Case 1: deviation from v_i to $z > v_i$ **Claim**: $u_i(v_i, v_i) \ge u_i(v_i, z)$ **Recall:** $u_i(v_i, v_i) = v_i x_i(v_i) - p_i(v_i)$ $v_i x_i(v_i)$ $p_i(v_i)$ $u_i(v_i, v_i)$ 1 1 $x_i(v_i)$ $x_i(v_i)$ $x_i(v_i)$ 0 0 0 $\dot{v_i}$ v_i v_i

• Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

June 6, 2011 • 26

Case 2: deviation from v_i to $z < v_i$ **Claim**: $u_i(v_i,v_i) \ge u_i(v_i,z)$ **Recall**: $u_i(v_i,v_i) = v_i x_i(v_i) - p_i(v_i)$

Case 2: deviation from v_i to $z < v_i$ **Claim**: $u_i(v_i,v_i) \ge u_i(v_i,z)$ **Recall**: $u_i(v_i,z) = v_i x_i(z) - p_i(z)$

• Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

June 6, 2011 • 28

Characterization of BNE: implications

Thm: a mechanism and strategy profile are in BNE iff

- 1. Monotonicity (M): $x_i(v_i)$ is monotone non-decreasing in v_i
- 2. Payment identity (PI): $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$ (Note: usually $p_i(0) = 0$.)

Implication: (Revenue Equivalence) Two auctions with the same outcome in BNE obtain the same expected revenue (e.g. first and second price auctions)

Implication: (strategy computation)

Characterization of BNE: implications

Thm: a mechanism and strategy profile are in BNE iff

- 1. Monotonicity (M): $x_i(v_i)$ is monotone non-decreasing in v_i
- 2. Payment identity (PI): $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$ (Note: usually $p_i(0) = 0$.)

Implication: (strategy computation)

Example: two bidders, values i.i.d. from U[0,1]

- Expected payment of agent 1 at value v_1 in 2nd price auction = $\Pr[v_2 < v_1] E[v_2 | v_2 < v_1] = \Pr[v_2 < v_1] v_1/2$
- Expected payment of agent 1 at value v_1 in 1st price auction = $\Pr[v_2 < v_1] b_1(v_1)$

 \Rightarrow In symmetric BNE, $b_1(v_1) = v_1/2$

Revisiting the revenue objective

Goal: find the auction that maximizes expected revenue

• Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

The Bayesian optimal auction

Objective: find monotone function $\mathbf{x}(v)$ to maximize $E[\sum_{i} p_{i}(v_{i})]$

Myerson's lemma: In BNE, $E[\sum_{i} p_i(v_i)] = E[\sum_{i} \phi_i(v_i) x_i(v_i)]$

where $\phi_i(v_i)$ is the virtual value function:

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

Proof sketch:

Ο

- Use characterization: $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz$
- Use definition of expectation: integrate payment x density
- Swap order of integration

Simplify to get:

$$E[p_i(v_i)] = E\left[\left(v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}\right) x_i(v_i)\right]$$

The Bayesian optimal auction

Myerson's lemma: In BNE, $E[\sum_{i} p_i(v_i)] = E[\sum_{i} \phi_i(v_i) x_i(v_i)]$ where $\phi_i(v_i)$ is the virtual value function:

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

General approach for revenue maximization:

- Optimize revenue ignoring incentive constraints (i.e. monotonicity)
 Winner is the agent with maximum virtual value
- Check to see if incentive constraints are satisfied If $\phi_i(v_i)$ is monotone, then so is $x_i(v_i)$

Defn: A distribution F_i is *regular* if ϕ_i is monotone

Thm: [Myerson'81] If *F* is regular, the optimal auction is to allocate the item to the agent with the highest positive virtual value.

[•] Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

Myerson's mechanism: examples

Thm: [Myerson'81] If *F* is regular, the optimal auction is to allocate the item to the agent with the highest positive virtual value.

Example: *n* agents, i.i.d. regular values

- Virtual value functions are all identical: $\phi_i = \phi_j = \phi$ for all *i*, *j*
- Winner *i* satisfies $\phi(v_i) \ge \max_j(\phi(v_j), 0)$
- That is, $v_i \ge \max_j (v_j, \phi^{-1}(0))$
- What is this auction? Second-price auction with reserve $\phi^{-1}(0)!$

Myerson's mechanism: examples

Thm: [Myerson'81] If *F* is regular, the optimal auction is to allocate the item to the agent with the highest positive virtual value.

Example: *n* agents, i.i.d. regular values

• Optimal auction: Second-price auction with reserve $\phi^{-1}(0)!$

Example: *n* agents, values i.i.d. from U[0,1]

$$F(v_i) = v_i; f(v_i) = 1$$

o So, $\phi(v_i) = v_i - \frac{1 - F(v_i)}{f(v_i)} = v_i - \frac{1 - v_i}{1} = 2v_i - 1$

• Therefore, $\phi^{-1}(0) = 1/2$

• Optimal auction: Second-price auction with reserve $\frac{1}{2}!$

Myerson's mechanism: non-regular case

Thm: [Myerson'81] If *F* is regular, the optimal auction is to allocate the item to the agent with the highest positive virtual value.

What if the distribution is non-regular?

- Convert virtual value to "ironed" virtual value
- "Ironed" virtual value is monotone non-decreasing
- Optimal mechanism: allocate item to the agent with the highest ironed virtual value breaking ties consistently
- Note: Even with i.i.d. values, optimal mechanism is not necessarily secondprice with reserve

Beyond single-item auctions

• Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

June 6, 2011 • 37

Problem: general service providing a.k.a. single-parameter MD

- A service to be provided
- *n* agents/bidders with unknown private values v_1, \ldots, v_n
- Agents' objective: max utility = value obtained price paid
- General feasibility constraint on which subsets of agents can be simultaneously served

Design goal:

• Protocol to solicit bids; choose (feasible) winner(s) and payment(s)

Possible objectives:

- Maximize **social surplus**, i.e. sum of values of winners
- Maximize seller's revenue i.e. sum of payments of winners

General service providing: revenue

Thm: If F is regular, the optimal auction allocates to the feasible subset that maximizes "virtual surplus"

- \circ Solicit bids, *v*
- Map bids to virtual bids $\phi_i(v_i)$
- Maximize over feasible sets $S: \sum_{i \in S} \phi_i(v_i)$
- Serve the set S
- Charge "critical prices"

Surprising result: the optimal auction is deterministic and dominant strategy truthful!

Observation: the theorem essentially gives a reduction revenue maximization to surplus maximization

from

• Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

Part 1: conclusions

We saw:

- Characterization of BNE
- Revenue equivalence
- Optimal mechanism design via virtual values
- Reserve price based auctions are often but not always optimal

Issues:

- Optimal auctions are often too complicated; not seen in practice.
- Theory does not extend to "multi-dimensional" MD
- Theory requires knowledge of distribution
- Theory assumes we can solve optimization problems exactly

See part 2 for how to deal with these!