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Mechanism Design

Basic question: How should an economic system be designed so that
selfish agent behavior leads to good outcomes?

Internet applications: file sharing, reputation systems, web search,
web advertising, email, Internet auctions, congestion control, etc.

General theme: resource allocation

® Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design June 46,2011 @2



Overview

Part 1: Intro to Bayesian Mechanism Design

o Classical mechanisms: First-price auction, Vickrey auction, Myerson’s
auction

Focus on single-item auction
Objective 1: Social welfare

Objective 2: Revenue
Generalize beyond single-item setting

Part 2 (after break): Recent results in Algorithmic BMD

® Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design June 46,2011 @3



Problem: single-item auction

Given:
o One item for sale
o n agents/bidders with unknown private values v, ..., v

n

o Agents’ objective: max utility = value obtained — price paid

Design goal:

o Protocol to solicit bids; choose winner and payment

Possible objectives:
o Maximize social surplus, i.e. value of the winner

o Maximize seller’s revenue i.e. payment of the winner
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Objective 1: Maximize social surplus
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Example auctions

First-price auction

7'
1. Solicit sealed bids

2. Highest bidder wins

‘S

Second-price auction

1. Solicit sealed bids
2. Highest bidder wins

3. Winner pays second-

S

\3. Winner pays his bid

.

highest bid

J

Example input: b = (2,6,4,1)

Questions:
o What are the equilibrium strategies?
o What is the equilibrium outcome?
o Which one has higher surplus?
o Which one has higher revenue?
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Second-price auction: equilibrium analysis

Second-price auction
r A
1. Solicit sealed bids 2. Highest bidder wins
3. Winner pays second-highest bid
U _/
How should agent i bid?
o Letr;=max;,;b,
o Ifb;>1t, i wins and pays #;; otherwise loses.
Case1:v; > t; Case2: v; < t;
\ .E‘ /
vi—tit Oy =
>
o} —) — — — — — — 0} ——) — — —
E . v;—t;t H
5 + + + +—> + + + + >
t; Vg Y vi it
Bid Value

Bid Value
Result: Bidder i’s dominant strategy 1s to bid b, = v,
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Second-price auction: conclusion

Second-price auction

7*
1. Solicit sealed bids 2. Highest bidder wins

\3° Winner pays second-highest bid

J

Lemma: [Vickrey’61] Truthful bidding 1s a dominant strategy in the

second-price auction

Corollary: Second-price auction maximizes social surplus, 1.e. value of

the winner.
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First-price auction: equilibrium analysis

First-price auction

7

1. Solicit sealed bids
2. Highest bidder wins
\3. Winner pays his bid

ﬁ

How would you bid?

Note: first-price auction has no dominant strategy equilibrium
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Bayes-Nash equilibrium

Defn: the common prior assumption: bidders’ values are drawn from a
known distribution, i.e., v, ~ F,

l

Notation:

o F(z) =Pr[v,<z] is the cumulative distribution function, (e.g.
F(z) = z for the uniform [0,1] distribution)

o fAz)=dF(z)/dz 1s the probability density function,
(e.g. f{z) =1 for the uniform [0,1] distribution)

Defn: a strategy maps values to bids, 1.e., b, = s/(v;)

Defn: A strategy profile (s, ..., s,) 1s in Bayes-Nash equilibrium 1f

for all 7, s(v;) 1s a best response when others play s(v;) and v;~ F.
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First-price auction: equilibrium analysis

Example: two bidders, values i.1.d. from U[0,1]

* Guess 5,(z) = z/2 1s BNE and verify
* [f agent 2 bids b, ~ U[0,1/2], how should agent 1 bid?

* Compute agent 1’s expected utility with bid b,

E[u,]=(v, - b)) xPr[l wins]

[ Prib, > b,1=Prlb, > v, /2]
=(v,—b,)2b, || =Pr2b>v,1=F,2b)=2h

=2(v,b,—b})

* To maximize, take derivative w.r.t. b, and set to zero; solve
* b,=v,/2; guess 1s verified!

Conclusion: bidder with highest value wins, social surplus is
maximized!
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Surplus maximization conclusions

First-price auction

7

1. Solicit sealed bids
2. Highest bidder wins
\3. Winner pays his bid

ﬁ

Second-price auction

1. Solicit sealed bids
2. Highest bidder wins

3. Winner pays second-

highest bid
N\

‘ﬁ

J

* Second-price auction maximizes surplus in DSE regardless of

distribution

* First-price auction maximizes surplus in BNE for i.1.d. distributions

Surprising result: the auctions are npﬁmal for any distribution
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Objective 2: Maximize seller’s revenue

Other objectives are similar
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An example

Example: two bidders, values 1.1.d. from U[0,1]

What 1s the revenue of the second-price auction?

Draw values v, v, from the unit interval | !

Values divide the unit line equally

O O O O

E[revenue of 2" price auction] = E[v,] = 1/3
What is the revenue of the first-price auction?

o E[revenue of 1% price auction] = E[b,] = E[v,]/2=1/3

Surprising result: both have the same expected revenue!

Can we get more?
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Second-price auction with reserve price

Second-price auction with reserve price r

70. Place seller bid at r h

1. Solicit sealed bids 2. Highest bidder wins
k3' Winner pays second-highest bid P

Lemma: Second-price auction with reserve r has a truthful DSE

What 1s the revenue of this auction?
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Example: second-price with reserve

Example: two bidders, values 1.1.d. from U[0,1]
What 1s the revenue of second-price with reserve 12?

o Draw values v, v, from unit interval :

o Sort values: v, = v, 0 ’Jz < ,Jl 1
Case analysis Probability  E[revenue]
Vv, SV, <% 1/4 0
o E[Revenue of second-price with reserve ']
1 I 1 12 5 1 :
=—0+—-—+—-— =— >—=E[Revenue of second-price]

4 2243 12 3

Can we do even better?

® Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design

June 6,2011 @16



Characterizing Bayes-Nash equilibria
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Notation

x denotes allocation, x; the allocation for agent i

x(v) 1s the BNE allocation of mechanism on values v, i.e., the
mechanism’s outcome composed with agents’ BNE strategies

V=V ey Vi Vs ey V)
x(vi) =B, [xi(viv )]
1s agent i’s interim prob. of allocation when v, ~ F |

Analogously define p, p(v), p(v;) for payments

Bidder i with value v, mimicking strategy for value z has utility u.(v;, z)
=vx(z) — pi2)

BNE = for all i, v,, and z, u(v,, v,) = u,(v,, 2)
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Characterization of BNE

Thm: a mechanism and strategy profile are in BNE iff
1. Monotonicity (M): x,v;) is monotone non-decreasing in v,
2. Payment identity (PI):  p,(v.)=v.x,(v,)— f Ovi x,(z)dz+ p,(0)
(Note: usually p,(0) =0.)

A A » Payment
1 + 1 + 1 +
xi(v;) x;(v;) z;(vi)
0 > O 1 > 0 >
’Uz 'vz ’Uz
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Characterization of BNE: proof outline

Thm: a mechanism and strategy profile are in BNE iff
1. Monotonicity (M): x,v;) is monotone non-decreasing in v,
2. Payment identity (PI):  p,(v.)=v.x,(v,)— f Ovi x,(z)dz+ p,(0)
(Note: usually p,(0) =0.)

Proof approach:
1. BNE=M
2. BNE = PI

3. BNE=M &PI
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BNE = M

Recall: BNE = u.(v;,v,) 2 u(v,,z) for all v, and z

* Take v, = s and z = ¢ and vice versa:
sx;(s)— p;(s) = sx,(¢) - p;(¥)
tx; (1) — p;(t) = tx;(s) — p;(s)
* Adding and regrouping:
sX;(8)+tx, (1) = sx;(¢) +tx.(s)
= (s—-1)x,(s)=(s—1)x,(¢)

* So x; 1S monotone non-decreasing: §S>1= xi(s )= Xl-(t )
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Characterization of BNE: proof outline

Thm: a mechanism and strategy profile are in BNE iff
1. Monotonicity (M): x,v;) is monotone non-decreasing in v,
2. Payment identity (PI):  p,(v.)=v.x,(v,)— f Ovi x,(z)dz+ p,(0)
(Note: usually p,(0) =0.)

Proof approach:
1. BNE=M
2. BNE = PI

3. BNE=M &PI
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BNE = PI

Recall: BNE = For all s and t:
le.(s)—pl.(s) = S)Cl-(t) — pi(t)
fx,-(f)—l?i(t) = txi(S)_pi(S)

* Rearranging:

f(Xi(S)—Xi(f)) = Pi(S)—Pi(f) = S(xl.(s)—xi(t))

A Upper bound A Lower bound
1+ 14+
x,(s) x{s)-4
x,(t) x{1)
r s r s r s

 Putting inequalities together for all pairs s and ¢ implies PI
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Characterization of BNE: proof outline

Thm: a mechanism and strategy profile are in BNE iff
1. Monotonicity (M): x,v;) is monotone non-decreasing in v,
2. Payment identity (PI):  p,(v.)=v.x,(v,)— f Ovi x,(z)dz+ p,(0)
(Note: usually p,(0) =0.)

Proof approach:
1. BNE=M
2. BNE = PI

3. BNE=M &PI
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BNE <M & PI

Case 1: deviation from v; to z > v,
Claim: u,(v;,v,) = u(v,,2)

Recall: u,(v;,v,) = vx,(v;) — pi(v;)

r Ui (Vi) r Di(vi) p wivi, vi)
1 + 1 T 1 T
0 i > () } > () >
Vi (U (%
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BNE <M & PI

Case 1: deviation from v; to z > v,
Claim: u,(v;,v,) = u(v,,2)

Recall: u.(v,.z) = vx(2) — p(2)

r Ui (Vi) r Di(vi) p wi(vi, Vi)
1 + 1 T 1 T
.'I:q,('vz) wz(vz)
0 ; > 0
(%)
y Uizi(2) A
1 + 4
0 | } > () — t
Vi < Vi Z Vi Z
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BNE <M & PI

Case 2: deviation from v; to z < v,
Claim: u.(v,,v;)) = u(v;,z)
Recall: u(v;,v,) =vx,(v,) — pAv,)

p ViZi(vi) pi(vi)

ZI; (’Uz) ZI; (’Uz)

(% (% (%
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BNE <M & PI

Case 2: deviation from v; to z < v,
Claim: u.(v,,v;)) = u(v;,z)
Recall: u.(v,.2) = vx(z) — p(2)

A ’Uz'l'q‘,(’Uz') A pz(vz) A ’LLi(’U'i,,’U'i,)

1 T 1+ 1 4+
zi(v:) i (vi) zi(vi) 1 7

L. 1 .
> T -

zZ U; Z VU

zZ U

(s}
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Characterization of BNE: implications

Thm: a mechanism and strategy profile are in BNE iff
1. Monotonicity (M): x,v;) is monotone non-decreasing in v,
2. Payment identity (PI):  p,(v,) =v.x,(v)— [ 0”" x.(2)dz + p,(0)
(Note: usually p,(0) =0.)

Implication: (Revenue Equivalence) Two auctions with the same
outcome in BNE obtain the same expected revenue (e.g. first and

second price auctions)

Implication: (strategy computation)
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Characterization of BNE: implications

Thm: a mechanism and strategy profile are in BNE iff
1. Monotonicity (M): x,v;) is monotone non-decreasing in v,
2. Payment identity (PI):  p,(v.)=v.x,(v,)— f Ovi x,(z)dz+ p,(0)
(Note: usually p,(0) =0.)

Implication: (strategy computation)
Example: two bidders, values i.1.d. from U[0,1]

o Expected payment of agent 1 at value v, in 2" price auction
= Pr[v,<v] E[v,lv,<v,] =Prlv,<v,]v,/2

o Expected payment of agent 1 at value v, in 1 price auction
= Pr[v,<v,] by(v))

= In symmetric BNE, b,(v,) =v,/2
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Revisiting the revenue objective

Goal: find the auction that maximizes expected revenue
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The Bayesian optimal auction

Objective: find monotone function x(v) to maximize E[X; p,(v;)]
Myerson’s lemma: In BNE, E[Y.p.(v)] = E[X; ¢(v;) x(v,)]
where ¢,(v,) 1s the virtual value function:

L _1=E0)
==

Proof sketch:
o Use characterization:  p.(v,)=v.x;(v;) - f Ov,- x,(z)dz
o Use definition of expectation: integrate payment x density
o Swap order of integration

o Simplify to get:

E[p,(v)]=E (w

fi(vi)

Xi (Vi)]
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The Bayesian optimal auction

Myerson’s lemma: In BNE, E[Y.p.(v)] = E[X; ¢(v;) x(v,)]
where ¢(v,) 1s the virtual value function:

¢i(vi) =V, -

1-F(v,)

i (v)

General approach for revenue maximization:

o Optimize revenue ignoring incentive constraints (i.e. monotonicity)

Winner is the agent with maximum virtual value

o Check to see if incentive constraints are satisfied

If ¢.(v;) is monotone, then so is x,(v,)

Defn: A distribution F, 1s regular if ¢, 1s monotone

Thm: [Myerson’81] If F 1s regular, the optimal auction 1s to allocate the

item to the agent with the highest positive virtual value.
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Myerson’s mechanism: examples

Thm: [Myerson’81] If F 1s regular, the optimal auction is to allocate the
item to the agent with the highest positive virtual value.

Example: n agents, 1.1.d. regular values

o Virtual value functions are all identical: ¢, = ¢, = ¢ for all 7,
o Winner i satisties ¢(v;) = max($(v;),0)
o Thatis, v;>max (v, ¢(0))
o What is this auction?
Second-price auction with reserve ¢ 1(0)!
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Myerson’s mechanism: examples

Thm: [Myerson’81] If F 1s regular, the optimal auction is to allocate the
item to the agent with the highest positive virtual value.

Example: n agents, 1.1.d. regular values

o Optimal auction: Second-price auction with reserve ¢ 1(0)!

Example: n agents, values 1.1.d. from UJ[0,1]
o F(Vi) = Vl-;f(Vi) =1
o So. plnymy LTFOD 1oy

foy
o Therefore, ¢ '(0)=1/2

=2v, -1

o Optimal auction: Second-price auction with reserve 2!
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Myerson’s mechanism: non-regular case

Thm: [Myerson’81] If F 1s regular, the optimal auction is to allocate the
item to the agent with the highest positive virtual value.

What if the distribution is non-regular?
o Convert virtual value to “ironed” virtual value
o “Ironed” virtual value is monotone non-decreasing

o Optimal mechanism: allocate item to the agent with the highest ironed
virtual value breaking ties consistently

Note: Even with 1.1.d. values, optimal mechanism 1s not necessarily second-
price with reserve A
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Beyond single-item auctions

® Shuchi Chawla & Jason Hartline: Bayesian Mechanism Design June 6,2011 @37



Problem: general service providing

a.k.a. single-parameter MD

Given:
o A service to be provided
o n agents/bidders with unknown private values v, ..., v,
o Agents’ objective: max utility = value obtained — price paid
o General feasibility constraint on which subsets of agents can be
simultaneously served
Design goal:
o Protocol to solicit bids; choose (feasible) winner(s) and payment(s)

Possible objectives:

O

Maximize social surplus, i.e. sum of values of winners

o Maximize seller’s revenue i.e. sum of payments of winners
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General service providing: revenue

Thm: If F is regular, the optimal auction allocates to the feasible subset
that maximizes “virtual surplus”

Solicit bids, v

Map bids to virtual bids ¢.(v,)

Maximize over feasible sets S: > . ¢ P4(v,)
Serve the set S

Charge “critical prices”

O O O O O

Surprising result: the optimal auction 1s deterministic and domingnt
strategy truthful!

Observation: the theorem essentially gives a reduction fromn
revenue maximization to surplus maximization
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Part 1: conclusions

We saw:
o Characterization of BNE
o Revenue equivalence
o Optimal mechanism design via virtual values
O

Reserve price based auctions are often but not always optimal

Issues:
o Optimal auctions are often too complicated; not seen 1n practice.
o Theory does not extend to “multi-dimensional” MD
o Theory requires knowledge of distribution
o Theory assumes we can solve optimization problems exactly

See part 2 for how to deal with these!
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