Tutorial on Bayesian Mechanism DesignPart II: Bayesian Approximation MechanismsShuchi ChawlaJason HartlineJune 5, 2011

The second part of the tutorial surveys four recent directions for approximation in Bayesian mechanism design. Result 1: reserve prices are approximately optimal in single-item auctions. Result 2: posted-pricings are approximately optimal multi-item mechanisms. Result 3: optimal auctions can be approximated with a single-sample from the prior distribution. Result 4: BIC mechanism design reduces to algorithm design.

Goals for Mechanism Design Theory

Mechanism Design: how can a social planner / optimizer achieve objective when participant preferences are private.

Goals for Mechanism Design Theory:

- *Descriptive:* predict/affirm mechanisms arising in practice.
- *Prescriptive:* suggest how good mechanisms can be designed.
- Conclusive: pinpoint salient characteristics of good mechanisms.
- *Tractable:* mechanism outcomes can be computed quickly.

Goals for Mechanism Design Theory

Mechanism Design: how can a social planner / optimizer achieve objective when participant preferences are private.

Goals for Mechanism Design Theory:

- *Descriptive:* predict/affirm mechanisms arising in practice.
- *Prescriptive:* suggest how good mechanisms can be designed.
- Conclusive: pinpoint salient characteristics of good mechanisms.
- *Tractable:* mechanism outcomes can be computed quickly.

Informal Thesis: *approximately optimality* is often descriptive, prescriptive, conclusive, and tractable.

Example 1: Gambler's Stopping Game

A Gambler's Stopping Game:

- sequence of n games,
- prize of game i is distributed from F_i ,
- prior-knowledge of distributions.

On day i, gambler plays game i:

- realizes prize $v_i \sim F_i$,
- chooses to keep prize and stop, or
- discard prize and *continue*.

Example 1: Gambler's Stopping Game

A Gambler's Stopping Game:

- sequence of n games,
- prize of game i is distributed from F_i ,
- prior-knowledge of distributions.

On day i, gambler plays game i:

- realizes prize $v_i \sim F_i$,
- chooses to keep prize and stop, or
- discard prize and *continue*.

Question: How should our gambler play?

Optimal Strategy:

- threshold t_i for stopping with *i*th prize.
- solve with "backwards induction".

Optimal Strategy:

- threshold t_i for stopping with *i*th prize.
- solve with "backwards induction".

Discussion:

- Complicated: n different, unrelated thresholds.
- *Inconclusive:* what are properties of good strategies?
- *Non-robust:* what if order changes? what if distribution changes?
- *Non-general:* what do we learn about variants of Stopping Game?

Threshold Strategies and Prophet Inequality -

Threshold Strategy: "fix *t*, gambler takes first prize $v_i \ge t$ ".

(clearly suboptimal, may not accept prize on last day!)

Threshold Strategies and Prophet Inequality.

Threshold Strategy: "fix t, gambler takes first prize $v_i \ge t$ ".

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that Pr["no prize"] = 1/2,

 $\mathbf{E}[\text{prize for strategy } t] \ge \mathbf{E}[\max_i v_i] / 2.$ [Samuel-Cahn '84]

Threshold Strategies and Prophet Inequality.

Threshold Strategy: "fix t, gambler takes first prize $v_i \ge t$ ".

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that Pr["no prize"] = 1/2,

 $\mathbf{E}[\text{prize for strategy } t] \ge \mathbf{E}[\max_i v_i] / 2.$ [Samuel-Cahn '84]

Discussion:

- *Simple:* one number *t*.
- Conclusive: trade-off "stopping early" with "never stopping".
- *Robust:* change order? change distribution above or below t?
- *General:* same solution works for similar games: invariant of "tie-breaking rule"

0. Notation:

- $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\textbf{E}[\max]$:

2. Lower Bound on **E**[prize]:

0. Notation:

- $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\textbf{E}[\max]$:

$$\mathbf{E}[\max] \le t + \mathbf{E}\left[\max_i (v_i - t)^+\right]$$

3. Choose
$$x = 1/2$$
 to prove theorem.

0. Notation:

- $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\textbf{E}[\max]$:

$$\mathbf{E}[\max] \le t + \mathbf{E}\left[\max_{i}(v_{i}-t)^{+}\right]$$
$$\le t + \sum_{i} \mathbf{E}\left[(v_{i}-t)^{+}\right].$$

3. Choose
$$x = 1/2$$
 to prove theorem.

0. Notation:

- $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\textbf{E}[\max]$:

$$\mathbf{E}[\max] \le t + \mathbf{E}\left[\max_{i}(v_{i}-t)^{+}\right]$$
$$\le t + \sum_{i} \mathbf{E}\left[(v_{i}-t)^{+}\right].$$

$$\mathbf{E}[\mathsf{prize}] \ge (1-x)t +$$

3. Choose
$$x = 1/2$$
 to prove theorem.

0. Notation:

- $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on $\textbf{E}[\max]$:

$$\mathsf{E}[\max] \le t + \mathsf{E}\left[\max_{i}(v_{i}-t)^{+}\right]$$
$$\le t + \sum_{i} \mathsf{E}\left[(v_{i}-t)^{+}\right].$$

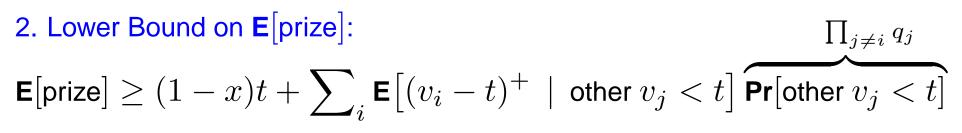
$$\mathbf{E}[\text{prize}] \ge (1-x)t + \sum_{i} \mathbf{E}[(v_i - t)^+ \mid \text{other } v_j < t] \operatorname{Pr}[\text{other } v_j < t]$$

3. Choose
$$x = 1/2$$
 to prove theorem.

0. Notation:

- $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on E[max]:

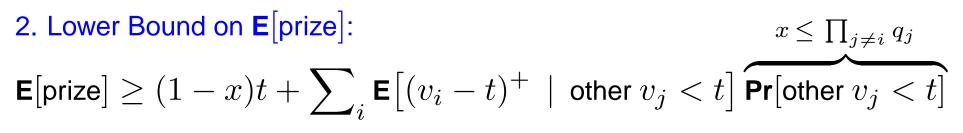
$$\mathbf{E}[\max] \le t + \mathbf{E}\left[\max_{i}(v_{i}-t)^{+}\right]$$
$$\le t + \sum_{i} \mathbf{E}\left[(v_{i}-t)^{+}\right].$$



0. Notation:

- $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on E[max]:

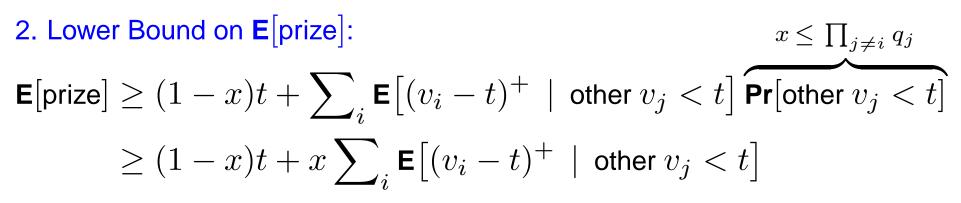
$$\mathbf{E}[\max] \le t + \mathbf{E}\left[\max_{i}(v_{i}-t)^{+}\right]$$
$$\le t + \sum_{i} \mathbf{E}\left[(v_{i}-t)^{+}\right].$$



0. Notation:

- $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on E[max]:

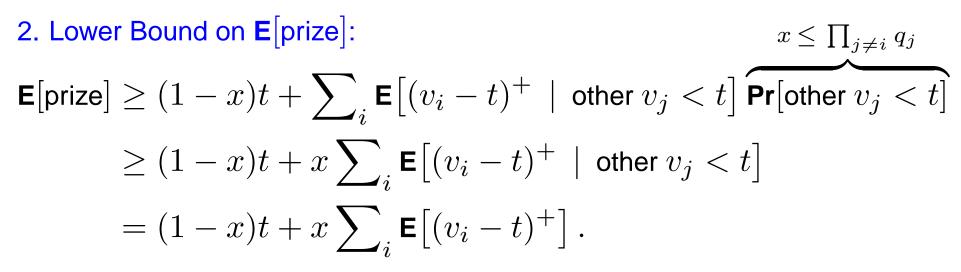
$$\begin{aligned} \mathbf{E}[\max] &\leq t + \mathbf{E}\left[\max_{i}(v_{i}-t)^{+}\right] \\ &\leq t + \sum_{i} \mathbf{E}\left[(v_{i}-t)^{+}\right]. \end{aligned}$$



0. Notation:

- $q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$.
- 1. Upper Bound on E[max]:

$$\begin{aligned} \mathsf{E}[\max] &\leq t + \mathsf{E}\left[\max_i (v_i - t)^+\right] \\ &\leq t + \sum_i \mathsf{E}\left[(v_i - t)^+\right]. \end{aligned}$$



What is the point of a 2-approximation?

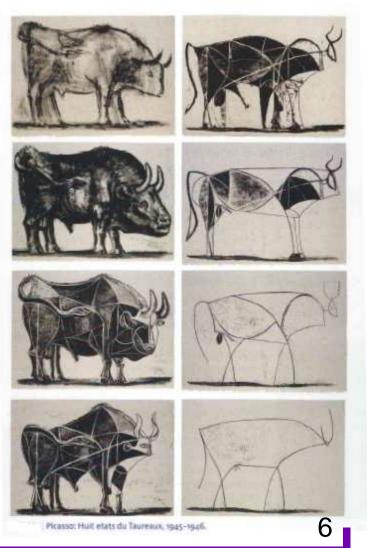
• Constant approximations identify salient features of model/solution.

- Constant approximations identify salient features of model/solution.
 Example: is X important in MD?
 - no, if mech without X is constant approx
 - yes, otherwise.

- Constant approximations identify salient features of model/solution.
 Example: is X important in MD? competition?
 - no, if mech without X is constant approx
 - yes, otherwise.

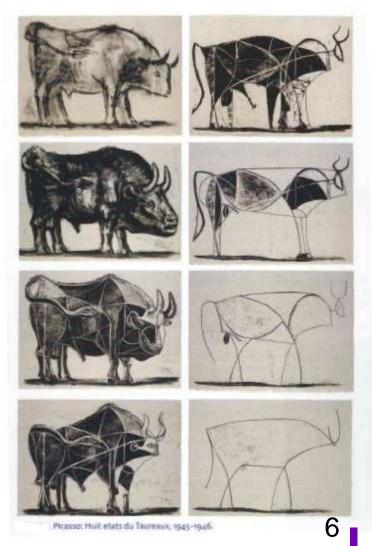
- Constant approximations identify salient features of model/solution.
 Example: is X important in MD? competition? transfers?
 - no, if mech without X is constant approx
 - yes, otherwise.

- Constant approximations identify salient features of model/solution. **Example:** is X important in MD? competition? transfers?
 - no, if mech without X is constant approx
 - yes, otherwise.



What is the point of a 2-approximation?

- Constant approximations identify salient features of model/solution. **Example:** is X important in MD? competition? transfers?
 - no, if mech without X is constant approx
 - yes, otherwise.
- Practitioner can apply intuition from theory.

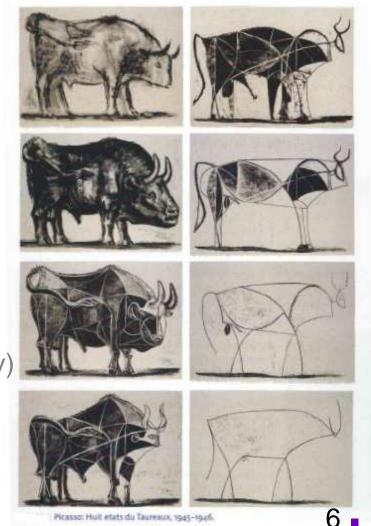


[Picasso's Bull 1945–1946 (one month)]

What is the point of a 2-approximation?

- Constant approximations identify salient features of model/solution.
 Example: is X important in MD? competition? transfers?
 - no, if mech without X is constant approx
 - yes, otherwise.
- Practitioner can apply intuition from theory.
- Exact optimization is often impossible. (information theoretically, computationally)

[Picasso's Bull 1945–1946 (one month)]



Questions?

1. Single-dimensional preferences

(e.g., single-item auctions)

2. Multi-dimensional preferences.

(e.g., multi-item auctions)

- 3. Prior-independent mechanisms.
- 4. Computationally tractable mechanisms.

Part I: Approximation for single-dimensional Bayesian mechanism design

(where agent preferences are given by a private value for service, zero for no service; preferences are drawn from a distribution)

Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

- a single item for sale,
- *n* buyers, and
- a dist. $\mathbf{F} = F_1 \times \cdots \times F_n$ from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

- a single item for sale,
- n buyers, and
- a dist. $\mathbf{F} = F_1 \times \cdots \times F_n$ from which the consumers' values for the item are drawn.

Goal: seller opt. auction for F.

Question: What is optimal auction?

Optimal Auction Design [Myerson '81] _____

1. Thm: BNE \Leftrightarrow allocation rule is monotone.

Optimal Auction Design [Myerson '81] _____

1. Thm: BNE \Leftrightarrow allocation rule is monotone.

2. Def: virtual value:
$$\varphi_i(v_i) = v_i - \frac{1 - F_i(v)}{f_i(v_i)}$$

Optimal Auction Design [Myerson '81]

- 1. Thm: BNE \Leftrightarrow allocation rule is monotone.
- 2. Def: virtual value: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)}$
- 3. **Def:** *virtual surplus*: virtual value of winner(s).

Optimal Auction Design [Myerson '81]

- 1. Thm: BNE \Leftrightarrow allocation rule is monotone.
- 2. Def: virtual value: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)}$
- 3. **Def:** *virtual surplus*: virtual value of winner(s).
- 4. Thm: E[revenue] = E[virtual surplus].

Optimal Auction Design [Myerson '81]

- 1. Thm: BNE \Leftrightarrow allocation rule is monotone.
- 2. Def: virtual value: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)}$
- 3. **Def:** *virtual surplus*: virtual value of winner(s).
- 4. Thm: E[revenue] = E[virtual surplus].
- 5. **Def:** F_i is *regular* iff virtual values monotone.

Optimal Auction Design [Myerson '81]

- 1. Thm: BNE \Leftrightarrow allocation rule is monotone.
- 2. Def: virtual value: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)}$
- 3. **Def:** *virtual surplus*: virtual value of winner(s).
- 4. Thm: E[revenue] = E[virtual surplus].
- 5. **Def:** F_i is *regular* iff virtual values monotone.
- 6. **Thm:** for regular dists, optimal auction sells to bidder with highest positive virtual value.

Optimal Auction Design [Myerson '81]

- 1. Thm: BNE \Leftrightarrow allocation rule is monotone.
- 2. Def: virtual value: $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)}$
- 3. **Def:** *virtual surplus*: virtual value of winner(s).
- 4. Thm: E[revenue] = E[virtual surplus].
- 5. **Def:** F_i is *regular* iff virtual values monotone.
- 6. Thm: for regular dists, optimal auction sells to bidder with highest positive virtual value.
- 7. Cor: for iid, regular dists, optimal auction is Vickrey with reserve price $\varphi^{-1}(0)$.

Optimal Auctions:

- *iid, regular distributions*: Vickrey with monopoly reserve price.
- general: sell to bidder with highest positive virtual value.

Optimal Auctions:

- *iid, regular distributions*: Vickrey with monopoly reserve price.
- general: sell to bidder with highest positive virtual value.

Discussion:

- iid, regular case: seems very special.
- general case: optimal auction rarely used. (too complicated?)

Question: when is reserve pricing a good approximation?

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = *constant virtual price* with Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan '10]

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = *constant virtual price* with Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan '10]

Proof: apply prophet inequality (tie-breaking by " v_i ") to virtual values.

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = *constant virtual price* with Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan '10]

Proof: apply prophet inequality (tie-breaking by " v_i ") to virtual values.

prophet inequality	Vickrey with reserves
prizes	virtual values
threshold t	virtual price
E [max prize]	E[optimal revenue]
${f E}[{f prize} \ {f for} \ t]$	E[Vickrey revenue]

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = *constant virtual price* with Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan '10]

Proof: apply prophet inequality (tie-breaking by " v_i ") to virtual values.

prophet inequality	Vickrey with reserves
prizes	virtual values
threshold t	virtual price
E [max prize]	E[optimal revenue]
${f E}[{f prize} \ {f for} \ t]$	E[Vickrey revenue]

Discussion:

- constant virtual price \Rightarrow bidder-specific reserves.
- *simple:* reserve prices natural, practical, and easy to find.
- *robust:* posted pricing with arbitrary tie-breaking works fine, collusion fine, etc.

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Anonymous Reserves

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with *anonymous reserve price* is 4-approximation. [H, Roughgarden '09]

Anonymous Reserves

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with *anonymous reserve price* is 4-approximation. [H, Roughgarden '09]

Proof: more complicated extension of prophet inequalities.

Anonymous Reserves

Question: for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with *anonymous reserve price* is 4-approximation. [H, Roughgarden '09]

Proof: more complicated extension of prophet inequalities.

Discussion:

- theorem is not tight, actual bound is in [2, 4].
- justifies wide prevalence.

Thm: non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations. [Chawla, H, Malec, Sivan '10]

Thm: non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations. [Chawla, H, Malec, Sivan '10]

Proof technique:

- optimal mechanism is a virtual surplus maximizer.
- reserve-price mechanisms are virtual surplus approximators.

Thm: non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations. [Chawla, H, Malec, Sivan '10]

Proof technique:

- optimal mechanism is a virtual surplus maximizer.
- reserve-price mechanisms are virtual surplus approximators.

Basic Open Question: to what extent do simple mechanisms approximate (well understood but complex) optimal ones?

Challenges: non-downward-closed settings, negative virtual values.

Questions?

Part II: Approximation for multi-dimensional Bayesian mechanism design

(where agent preferences are given by values for each available service, zero for no service; preferences drawn from distribution)

Example 3: unit-demand pricing _____

Problem: Bayesian Unit-Demand Pricing

- a single, unit-demand consumer.
- *n* items for sale.
- a dist. $\mathbf{F} = F_1 \times \cdots \times F_n$ from which the consumer's values for each item are drawn.

Goal: seller optimal *item-pricing* for \mathbf{F} .

Example 3: unit-demand pricing _____

Problem: Bayesian Unit-Demand Pricing

- a single, unit-demand consumer.
- *n* items for sale.
- a dist. $\mathbf{F} = F_1 \times \cdots \times F_n$ from which the consumer's values for each item are drawn.

Goal: seller optimal *item-pricing* for F.

Question: What is optimal pricing?

Optimal Pricing: consider distribution, feasibility constraints, incentive constraints, and solve!

Optimal Pricing: consider distribution, feasibility constraints, incentive constraints, and solve!

Discussion:

- little conceptual insight and
- not generally tractable.

____ Analogy _____

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, *unit-demand* buyer,
- *n* items for sale, and

Analogy _____

 a dist. F from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Problem: Bayesian Single-item Auction (a.k.a., **SD-AUCTION**)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

Goal: seller opt. auction for F.

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, *unit-demand* buyer,
- *n* items for sale, and

Analogy _____

 a dist. F from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Note: Same informational structure.

Problem: Bayesian Single-item Auction (a.k.a., **SD-AUCTION**)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

Goal: seller opt. auction for F.

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, *unit-demand* buyer,
- *n* items for sale, and

Analogy _____

 a dist. F from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Problem: Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Note: Same informational structure. **Thm:** for any indep. distributions, MD-PRICING \leq SD-AUCTION.

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, *unit-demand* buyer,
- *n* items for sale, and

Analogy _____

 a dist. F from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Problem: Bayesian Single-item Auction (a.k.a., **SD-AUCTION**)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Note: Same informational structure. Thm: for any indep. distributions, MD-PRICING \leq SD-AUCTION. Thm: a constant virtual price for MD-PRICING is 2-approx. [Chawla,H,Malec,Sivan'10]

Problem: Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, *unit-demand* buyer,
- *n* items for sale, and

Analogy ____

 a dist. F from which the consumer's value for each item is drawn.

Goal: seller opt. item-pricing for \mathbf{F} .

Problem: Bayesian Single-item Auction (a.k.a., **SD-AUCTION**)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

Goal: seller opt. auction for \mathbf{F} .

Note: Same informational structure. Thm: for any indep. distributions, MD-PRICING \leq SD-AUCTION. Thm: a constant virtual price for MD-PRICING is 2-approx. Proof: prophet inequality (tie-break by " $-p_i$ "). [Chawla,H,Malec,Sivan'10]

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan '10]

Multi-item Auctions _____

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan '10]

Approach:

1. Analogy: "single-dimensional analog"

(replace unit-demand agent with many single-dimensional agents)

Multi-item Auctions _____

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan '10]

Approach:

1. Analogy: "single-dimensional analog"

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION \geq MD-PRICING

(competition increases revenue)

Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan '10]

Approach:

1. Analogy: "single-dimensional analog"

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION \geq MD-PRICING

(competition increases revenue)

3. *Reduction:* MD-PRICING \geq SD-PRICING

(pricings don't use competition)

Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan '10]

Approach:

1. Analogy: "single-dimensional analog"

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION \geq MD-PRICING

(competition increases revenue)

3. *Reduction:* MD-PRICING \geq SD-PRICING

(pricings don't use competition)

4. *Instantiation:* SD-PRICING $\geq \frac{1}{\beta}$ SD-AUCTION (virtual surplus approximation)

Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan '10]

Sequential Posted Pricing Discussion _____

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan '10]

Discussion:

- robust to agent ordering, collusion, etc.
- conclusive:
 - competition not important for approximation.
 - unit-demand incentives similar to single-dimensional incentives.
- *practical*: posted pricings widely prevalent. (e.g., eBay)

Sequential Posted Pricing Discussion ____

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan '10]

Discussion:

- robust to agent ordering, collusion, etc.
- conclusive:
 - competition not important for approximation.
 - unit-demand incentives similar to single-dimensional incentives.
- *practical*: posted pricings widely prevalent. (e.g., eBay)

Open Question: identify upper bounds beyond unit-demand settings:

- analytically tractable and
- approximable.

Questions?

Part III: Approximation for prior-independent mechanism design.

(mechanisms should be good for any set of agent preferences, not just given distributional assumptions)

• where does prior come from?

- where does prior come from?
- is prior accurate?

- where does prior come from?
- is prior accurate?
- prior-dependent mechanisms are non-robust.

The trouble with priors _____

- where does prior come from?
- is prior accurate?
- prior-dependent mechanisms are non-robust.
- what if one mechanism must be used in many scenarios?

The trouble with priors _____

The trouble with priors:

- where does prior come from?
- is prior accurate?
- prior-dependent mechanisms are non-robust.
- what if one mechanism must be used in many scenarios?

Question: can we design good auctions without knowledge of prior-distribution?

Optimal Prior-independent Mechs

Optimal Prior-indep. Mech: (a.k.a., non-parametric implementation)

- 1. agents report value and prior,
- 2. shoot agents if disagree, otherwise
- 3. run optimal mechanism for reported prior.

Discussion:

- *complex*, agents must report high-dimensional object.
- *non-robust*, e.g., if agents make mistakes.
- *inconclusive*, begs the question.

Thm: for iid, regular, single-item auctions, the Vickrey auction on n + 1 bidders has more revenue than the optimal auction on n bidders. [Bulow, Klemperer '96]

Thm: for iid, regular, single-item auctions, the Vickrey auction on n + 1bidders has more revenue than the optimal auction on n bidders. [Bulow, Klemperer '96] Discussion: [Dhangwatnotai, Roughgarden, Yan '10]

- "recruit one more bidder" is prior-independent strategy.
- "bicriteria" approximation result.
- *conclusive:* competition more important than optimization.

Thm: for iid, regular, single-item auctions, the Vickrey auction on n + 1bidders has more revenue than the optimal auction on n bidders. [Bulow, Klemperer '96] Discussion: [Dhangwatnotai, Roughgarden, Yan '10]

- "recruit one more bidder" is prior-independent strategy.
- "bicriteria" approximation result.
- *conclusive:* competition more important than optimization.
- *non-generic*: e.g., for k-unit auctions, need k additional bidders.

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

• each bidder in Vickrey views other bid as "random reserve".

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

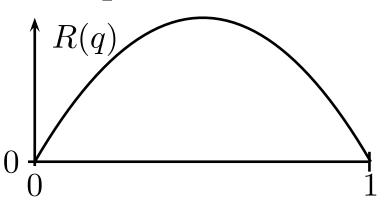
- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue = $2 \times$ random reserve revenue.

Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue = $2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:

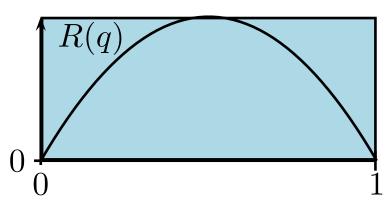
Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue = $2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:



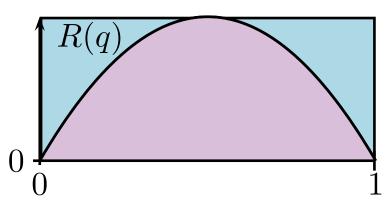
Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue = $2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:



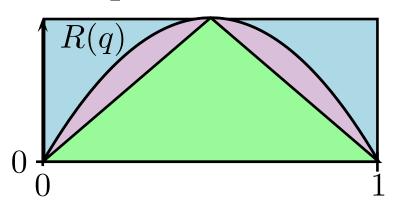
Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue = $2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:



Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

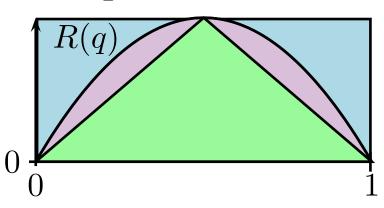
- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue = $2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:



Special Case: for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue = $2 \times$ random reserve revenue.
- random reserve revenue $\geq \frac{1}{2} \times$ optimal reserve revenue:



• So Vickrey with two bidders \geq optimal revenue from one bidder.

Question: how should a profit-maximizing seller sell a *digital good* (n bidder, n copies of item)?

Question: how should a profit-maximizing seller sell a *digital good* (n bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution, post the monopoly price $\varphi^{-1}(0)$. [Myerson '81]

Question: how should a profit-maximizing seller sell a *digital good* (n bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution, post the monopoly price $\varphi^{-1}(0).$ [Myerson '81]

Discussion:

- optimal,
- simple, but
- not prior-independent

Single-Sample Auction: (for digital goods)

- [Dhangwatnotai, Roughgarden, Yan '10] 1. pick random agent i as sample.
- 2. offer all other agents price v_i .
- 3. reject i.

Single-Sample Auction: (for digital goods)

- [Dhangwatnotai, Roughgarden, Yan '10] 1. pick random agent i as sample.
- 2. offer all other agents price v_i .
- 3. reject i.

Thm: for iid, regular distributions, single sample auction on (n+1)-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan '10]

Single-Sample Auction: (for digital goods)

- [Dhangwatnotai, Roughgarden, Yan '10] 1. pick random agent i as sample.
- 2. offer all other agents price v_i .
- 3. reject i.

Thm: for iid, regular distributions, single sample auction on (n + 1)-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan '10] **Proof:** from geometric argument.

Single-Sample Auction: (for digital goods)

- [Dhangwatnotai, Roughgarden, Yan '10] 1. pick random agent i as sample.
- 2. offer all other agents price v_i .
- 3. reject i.

Thm: for iid, regular distributions, single sample auction on (n + 1)-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan '10] Proof: from geometric argument.

Discussion:

- prior-independent.
- conclusive,
 - learn distribution from reports, not cross-reporting.
 - don't need precise distribution, only need single sample for approximation. (more samples can improve approximation/robustness.)
- *generic*, applies to general settings.

Recent Extensions:

- non-identical distributions. [Dhangwatnotai, Roughgarden, Yan '10]
- online auctions. [Babaioff, Dughmi, Slivkins WBMD'11]
- position auctions, matroids, downward-closed environments. [H, Yan EC'11]

Recent Extensions:

- non-identical distributions. [Dhangwatnotai, Roughgarden, Yan '10]
- online auctions. [Babaioff, Dughmi, Slivkins WBMD'11]
- position auctions, matroids, downward-closed environments. [H, Yan EC'11]

Open Questions:

- non-downward-closed environments?
- multi-dimensional preferences?

Questions?

Part IV: Computational Tractability in Bayesian mechanism design

(where the optimal mechanism may be computationally intractable)

Example 5: single-minded combinatorial auction .

Problem: Single-minded combinatorial auction

- n agents,
- *m* items for sale.
- Agent *i* wants only bundle $S_i \subset \{1, \ldots, m\}$.
- Agent *i*'s value v_i drawn from F_i .

Goal: auction to maximize social surplus (a.k.a., welfare).

Example 5: single-minded combinatorial auction .

Problem: Single-minded combinatorial auction

- n agents,
- *m* items for sale.
- Agent *i* wants only bundle $S_i \subset \{1, \ldots, m\}$.
- Agent *i*'s value v_i drawn from F_i .

Goal: auction to maximize *social surplus* (a.k.a., welfare).

Question: What is optimal mechanism?

Optimal Combinatorial Auction

Optimal Combinatorial Auction: VCG

- 1. allocate to maximize reported surplus,
- 2. charge each agent their "externality".

Optimal Combinatorial Auction

Optimal Combinatorial Auction: VCG

- 1. allocate to maximize reported surplus,
- 2. charge each agent their "externality".

Discussion:

- distribution is irrelevant (for welfare maximization).
- Step 1 is NP-hard weighted set packing problem.
- Cannot replace Step 1 with approximation algorithm.

Challenge: $x_i(v_i)$ for alg \mathcal{A} with $\mathbf{v}_{i} \sim \mathbf{F}_{i}$ may not be monotone.

BIC reduction

Question: Can we convert any algorithm into a mechanism without reducing its social welfare?

Challenge: $x_i(v_i)$ for alg \mathcal{A} with $\mathbf{v}_{i} \sim \mathbf{F}_{i}$ may not be monotone.

Approach:

• Run
$$\mathcal{A}(\sigma_1(v_1),\ldots,\sigma_n(v_n)).$$

Challenge: $x_i(v_i)$ for alg \mathcal{A} with $\mathbf{v}_{i} \sim \mathbf{F}_{i}$ may not be monotone.

Approach:

• Run
$$\mathcal{A}(\sigma_1(v_1),\ldots,\sigma_n(v_n))$$
.

BIC reduction

• σ_i calculated from *max weight matching* on *i*'s type space.

Challenge: $x_i(v_i)$ for alg \mathcal{A} with $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$ may not be monotone.

Approach:

• Run $\mathcal{A}(\sigma_1(v_1),\ldots,\sigma_n(v_n)).$

BIC reduction

- σ_i calculated from *max weight matching* on *i*'s type space.
 - stationary with respect to F_i .
 - $x_i(\sigma_i(v_i))$ monotone.
 - welfare preserved.

Example:

$f(v_i)$	v_i	$x_i(v_i)$
.25	1	0.1
.25	4	0.5
.25	5	0.4
.25	10	1.0

Example:

$f(v_i)$	v_{i}	$x_i(v_i)$	$\sigma_i(v_i)$
.25	1	0.1	1
.25	4	0.5	5
.25	5	0.4	4
.25	10	1.0	10

Example:

$f(v_i)$	v_i	$x_i(v_i)$	$\sigma_i(v_i)$	$x_i(\sigma_i(v_i))$
.25	1	0.1	1	0.1
.25	4	0.5	5	0.4
.25	5	0.4	4	0.5
.25	10	1.0	10	1.0

Example:

$f(v_i)$	v_i	$x_i(v_i)$	$\sigma_i(v_i)$	$x_i(\sigma_i(v_i))$
.25	1	0.1	1	0.1
.25	4	0.5	5	0.4
.25	5	0.4	4	0.5
.25	10	1.0	10	1.0

Note:

- σ_i is from max weight matching between v_i and $x_i(v_i)$.
- σ_i is stationary.
- σ_i (weakly) improves welfare.

Thm: Any algorithm can be converted into a mechanism with no loss in expected welfare. Runtime is polynomial in size of agent's type space. [H, Lucier '10; H, Kleinberg, Malekian '11; Bei, Huang '11]

Discussion:

- applies to all algorithms not just worst-case approximations.
- BIC incentive constraints are solved independently.
- works with multi-dimensional preferences too.

Extension:

• impossibility for IC reduction. [Immorlica, Lucier WBMD'11]

Extension:

• impossibility for IC reduction. [Immorlica, Lucier WBMD'11]

Open Questions:

- non-brute-force in type-space? e.g., for product distributions?
- other objectives, e.g., makespan?

Questions?

Workshop Overview

11:30-12:20: Online, prior-independence, and tractability:

- On the Impossibility of Black-Box Truthfulness without Priors by Immorlica and Lucier

2:00-3:40: Multi-dimensional approximation and computation:

- Approximating Optimal Combinatorial Auctions for Complements Using Restricted Welfare Maximization by Tang and Sandholm
- Extreme-Value Theorems for Optimal Multidimensional Pricing . . by Cai and Daskalakis
- Bayesian Combinatorial Auctions: Expanding Single Buyer
 Mechanisms to Many Buyers
 by Alaei
- On Optimal Multi-Dimensional Mechanism Design by Daskalakis and Weinberg

4:10-5:30: Bayes-Nash mechanism design:

- Strongly Budget-Balanced and Nearly Efficient Allocation of a Single Good by Cavallo
- Optimality versus Practicality in Market Design: A Comparison of Two Double Auctions by Satterthwaite, Williams, and Zachariadsi
- Crowdsourced Bayesian Auctions by Azar, Chen, and Micali