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The second part of the tutorial surveys four recent directions for approx-

imation in Bayesian mechanism design. Result 1: reserve prices are

approximately optimal in single-item auctions. Result 2: posted-pricings

are approximately optimal multi-item mechanisms. Result 3: optimal auc-

tions can be approximated with a single-sample from the prior distribu-

tion. Result 4: BIC mechanism design reduces to algorithm design.



Goals for Mechanism Design Theory

Mechanism Design: how can a social planner / optimizer achieve
objective when participant preferences are private.

Goals for Mechanism Design Theory:

• Descriptive: predict/affirm mechanisms arising in practice.

• Prescriptive: suggest how good mechanisms can be designed.

• Conclusive: pinpoint salient characteristics of good mechanisms.

• Tractable: mechanism outcomes can be computed quickly.
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Goals for Mechanism Design Theory

Mechanism Design: how can a social planner / optimizer achieve
objective when participant preferences are private.

Goals for Mechanism Design Theory:

• Descriptive: predict/affirm mechanisms arising in practice.

• Prescriptive: suggest how good mechanisms can be designed.

• Conclusive: pinpoint salient characteristics of good mechanisms.

• Tractable: mechanism outcomes can be computed quickly.

Informal Thesis: approximately optimality is often descriptive, prescrip-
tive, conclusive, and tractable.
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Example 1: Gambler’s Stopping Game

A Gambler’s Stopping Game:

• sequence of n games,

• prize of game i is distributed from Fi,

• prior-knowledge of distributions.

On day i, gambler plays game i:

• realizes prize vi ∼ Fi,

• chooses to keep prize and stop, or

• discard prize and continue.
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Example 1: Gambler’s Stopping Game

A Gambler’s Stopping Game:

• sequence of n games,

• prize of game i is distributed from Fi,

• prior-knowledge of distributions.

On day i, gambler plays game i:

• realizes prize vi ∼ Fi,

• chooses to keep prize and stop, or

• discard prize and continue.

Question: How should our gambler play?
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Optimal Strategy

Optimal Strategy:

• threshold ti for stopping with ith prize.

• solve with “backwards induction”.
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Optimal Strategy

Optimal Strategy:

• threshold ti for stopping with ith prize.

• solve with “backwards induction”.

Discussion:

• Complicated: n different, unrelated thresholds.

• Inconclusive: what are properties of good strategies?

• Non-robust: what if order changes? what if distribution changes?

• Non-general: what do we learn about variants of Stopping Game?
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Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix t, gambler takes first prize vi ≥ t”.

(clearly suboptimal, may not accept prize on last day!)
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Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix t, gambler takes first prize vi ≥ t”.

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that Pr[“no prize”] = 1/2,

E[prize for strategy t] ≥ E[maxi vi] /2.
[Samuel-Cahn ’84]

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
4



Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix t, gambler takes first prize vi ≥ t”.

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that Pr[“no prize”] = 1/2,

E[prize for strategy t] ≥ E[maxi vi] /2.
[Samuel-Cahn ’84]

Discussion:

• Simple: one number t.

• Conclusive: trade-off “stopping early” with “never stopping”.

• Robust: change order? change distribution above or below t?

• General: same solution works for similar games: invariant of
“tie-breaking rule”
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

2. Lower Bound on E[prize]:

3. Choose x = 1/2 to prove theorem.
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E[max] ≤ t + E
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maxi(vi − t)+
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2. Lower Bound on E[prize]:
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Prophet Inequality Proof
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• qi = Pr[vi < t].

• x = Pr[never stops] =
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i qi.

1. Upper Bound on E[max]:

E[max] ≤ t + E
[
maxi(vi − t)+

]

≤ t +
∑

i
E
[
(vi − t)+

]
.

2. Lower Bound on E[prize]:

E[prize] ≥ (1 − x)t +

3. Choose x = 1/2 to prove theorem.
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

E[max] ≤ t + E
[
maxi(vi − t)+

]

≤ t +
∑

i
E
[
(vi − t)+

]
.

2. Lower Bound on E[prize]:

E[prize] ≥ (1 − x)t +
∑

i
E
[
(vi − t)+ | other vj < t

]
Pr[other vj < t]

3. Choose x = 1/2 to prove theorem.
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

E[max] ≤ t + E
[
maxi(vi − t)+

]

≤ t +
∑

i
E
[
(vi − t)+

]
.

2. Lower Bound on E[prize]:

E[prize] ≥ (1 − x)t +
∑

i
E
[
(vi − t)+ | other vj < t

]

Q

j 6=i
qj

︷ ︸︸ ︷

Pr[other vj < t]

3. Choose x = 1/2 to prove theorem.

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
5
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[
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[
(vi − t)+

]
.

2. Lower Bound on E[prize]:

E[prize] ≥ (1 − x)t +
∑

i
E
[
(vi − t)+ | other vj < t

]

x≤
Q

j 6=i
qj

︷ ︸︸ ︷

Pr[other vj < t]

3. Choose x = 1/2 to prove theorem.
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[
(vi − t)+ | other vj < t

]

x≤
Q

j 6=i
qj
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Pr[other vj < t]

≥ (1 − x)t + x
∑

i
E
[
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]

3. Choose x = 1/2 to prove theorem.
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Philosophy of Approximation

What is the point of a 2-approximation?

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
6



Philosophy of Approximation
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify salient features of model/solution.
Example: is X important in MD?

– no, if mech without X is constant
approx

– yes, otherwise.
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify salient features of model/solution.
Example: is X important in MD? competition?

– no, if mech without X is constant
approx

– yes, otherwise.
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Philosophy of Approximation

What is the point of a 2-approximation?
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Example: is X important in MD? competition? transfers?

– no, if mech without X is constant
approx

– yes, otherwise.
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify salient features of model/solution.
Example: is X important in MD? competition? transfers?

– no, if mech without X is constant
approx

– yes, otherwise.

[Picasso’s Bull 1945–1946 (one month)]
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify salient features of model/solution.
Example: is X important in MD? competition? transfers?

– no, if mech without X is constant
approx

– yes, otherwise.

• Practitioner can apply intuition from
theory.

[Picasso’s Bull 1945–1946 (one month)]
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Philosophy of Approximation

What is the point of a 2-approximation?

• Constant approximations identify salient features of model/solution.
Example: is X important in MD? competition? transfers?

– no, if mech without X is constant
approx

– yes, otherwise.

• Practitioner can apply intuition from
theory.

• Exact optimization is often impossible.
(information theoretically, computationally)

[Picasso’s Bull 1945–1946 (one month)]
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Questions?



Overview

1. Single-dimensional preferences

(e.g., single-item auctions)

2. Multi-dimensional preferences.

(e.g., multi-item auctions)

3. Prior-independent mechanisms.

4. Computationally tractable mechanisms.
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Part I: Approximation for single-dimensional Bayesian mechanism
design

(where agent preferences are given by a private value for service, zero
for no service; preferences are drawn from a distribution)



Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

• a single item for sale,

• n buyers, and

• a dist. F = F1 × · · · × Fn from which the
consumers’ values for the item are drawn.

Goal: seller opt. auction for F.
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Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

• a single item for sale,

• n buyers, and

• a dist. F = F1 × · · · × Fn from which the
consumers’ values for the item are drawn.

Goal: seller opt. auction for F.

Question: What is optimal auction?
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Optimal Auction Design [Myerson ’81]

1. Thm: BNE ⇔ allocation rule is monotone.
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Optimal Auction Design [Myerson ’81]

1. Thm: BNE ⇔ allocation rule is monotone.

2. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)
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3. Def: virtual surplus: virtual value of winner(s).
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4. Thm: E[revenue] = E[virtual surplus].
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1−Fi(v)
fi(vi)

3. Def: virtual surplus: virtual value of winner(s).

4. Thm: E[revenue] = E[virtual surplus].

5. Def: Fi is regular iff virtual values monotone.
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Optimal Auction Design [Myerson ’81]

1. Thm: BNE ⇔ allocation rule is monotone.

2. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

3. Def: virtual surplus: virtual value of winner(s).

4. Thm: E[revenue] = E[virtual surplus].

5. Def: Fi is regular iff virtual values monotone.

6. Thm: for regular dists, optimal auction sells to bidder with highest
positive virtual value.
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Optimal Auction Design [Myerson ’81]

1. Thm: BNE ⇔ allocation rule is monotone.

2. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

3. Def: virtual surplus: virtual value of winner(s).

4. Thm: E[revenue] = E[virtual surplus].

5. Def: Fi is regular iff virtual values monotone.

6. Thm: for regular dists, optimal auction sells to bidder with highest
positive virtual value.

7. Cor: for iid, regular dists, optimal auction is Vickrey with reserve
price ϕ−1(0).
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Optimal Auctions

Optimal Auctions:

• iid, regular distributions: Vickrey with monopoly reserve price.

• general: sell to bidder with highest positive virtual value.

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
12



Optimal Auctions

Optimal Auctions:

• iid, regular distributions: Vickrey with monopoly reserve price.

• general: sell to bidder with highest positive virtual value.

Discussion:

• iid, regular case: seems very special.

• general case: optimal auction rarely used. (too complicated?)
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan ’10]
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan ’10]

Proof: apply prophet inequality (tie-breaking by “vi”) to virtual values.
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan ’10]

Proof: apply prophet inequality (tie-breaking by “vi”) to virtual values.

prophet inequality Vickrey with reserves

prizes virtual values

threshold t virtual price

E[max prize] E[optimal revenue]

E[prize for t] E[Vickrey revenue]
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan ’10]

Proof: apply prophet inequality (tie-breaking by “vi”) to virtual values.

prophet inequality Vickrey with reserves

prizes virtual values

threshold t virtual price

E[max prize] E[optimal revenue]

E[prize for t] E[Vickrey revenue]

Discussion:

• constant virtual price ⇒ bidder-specific reserves.

• simple: reserve prices natural, practical, and easy to find.

• robust: posted pricing with arbitrary tie-breaking works fine,
collusion fine, etc.
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Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)
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Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with anonymous
reserve price is 4-approximation. [H, Roughgarden ’09]
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Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with anonymous
reserve price is 4-approximation. [H, Roughgarden ’09]

Proof: more complicated extension of prophet inequalities.

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
14



Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with anonymous
reserve price is 4-approximation. [H, Roughgarden ’09]

Proof: more complicated extension of prophet inequalities.

Discussion:

• theorem is not tight, actual bound is in [2, 4].

• justifies wide prevalence.
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Extensions

Beyond single-item auctions: general feasibility constraints.
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Extensions

Beyond single-item auctions: general feasibility constraints.

Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, H, Malec, Sivan ’10]
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Extensions

Beyond single-item auctions: general feasibility constraints.

Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, H, Malec, Sivan ’10]

Proof technique:

• optimal mechanism is a virtual surplus maximizer.

• reserve-price mechanisms are virtual surplus approximators.
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Extensions

Beyond single-item auctions: general feasibility constraints.

Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, H, Malec, Sivan ’10]

Proof technique:

• optimal mechanism is a virtual surplus maximizer.

• reserve-price mechanisms are virtual surplus approximators.

Basic Open Question: to what extent do simple mechanisms approxi-
mate (well understood but complex) optimal ones?

Challenges: non-downward-closed settings, negative virtual values.
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Questions?



Part II: Approximation for multi-dimensional Bayesian mechanism
design

(where agent preferences are given by values for each available
service, zero for no service; preferences drawn from distribution)



Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing

• a single, unit-demand consumer.

• n items for sale.

• a dist. F = F1 × · · · × Fn from which the con-
sumer’s values for each item are drawn.

Goal: seller optimal item-pricing for F.
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Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing

• a single, unit-demand consumer.

• n items for sale.

• a dist. F = F1 × · · · × Fn from which the con-
sumer’s values for each item are drawn.

Goal: seller optimal item-pricing for F.

Question: What is optimal pricing?
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Optimal Pricing

Optimal Pricing: consider distribution, feasibility constraints, incentive
constraints, and solve!
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Optimal Pricing

Optimal Pricing: consider distribution, feasibility constraints, incentive
constraints, and solve!

Discussion:

• little conceptual insight and

• not generally tractable.
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Analogy

Challenge: approximate optimal but we do not understand it?

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
20



Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.
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• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
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Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING ≤ SD-AUCTION.
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Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING ≤ SD-AUCTION.
Thm: a constant virtual price for MD-PRICING is 2-approx.

[Chawla,H,Malec,Sivan’10]
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Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING ≤ SD-AUCTION.
Thm: a constant virtual price for MD-PRICING is 2-approx.

[Chawla,H,Malec,Sivan’10]Proof: prophet inequality (tie-break by “−pi”).
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION ≥ MD-PRICING

(competition increases revenue)
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION ≥ MD-PRICING

(competition increases revenue)

3. Reduction: MD-PRICING ≥ SD-PRICING

(pricings don’t use competition)
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION ≥ MD-PRICING

(competition increases revenue)

3. Reduction: MD-PRICING ≥ SD-PRICING

(pricings don’t use competition)

4. Instantiation: SD-PRICING ≥ 1
β

SD-AUCTION

(virtual surplus approximation)
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Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
22



Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Discussion:

• robust to agent ordering, collusion, etc.

• conclusive:

– competition not important for approximation.

– unit-demand incentives similar to single-dimensional incentives.

• practical: posted pricings widely prevalent. (e.g., eBay)
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Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Discussion:

• robust to agent ordering, collusion, etc.

• conclusive:

– competition not important for approximation.

– unit-demand incentives similar to single-dimensional incentives.

• practical: posted pricings widely prevalent. (e.g., eBay)

Open Question: identify upper bounds beyond unit-demand settings:

• analytically tractable and

• approximable.
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Questions?



Part III: Approximation for prior-independent mechanism design.

(mechanisms should be good for any set of agent preferences, not just
given distributional assumptions)



The trouble with priors

The trouble with priors:
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The trouble with priors:

• where does prior come from?
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The trouble with priors

The trouble with priors:

• where does prior come from?

• is prior accurate?

• prior-dependent mechanisms are non-robust.

• what if one mechanism must be used in many scenarios?

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
25



The trouble with priors

The trouble with priors:

• where does prior come from?

• is prior accurate?

• prior-dependent mechanisms are non-robust.

• what if one mechanism must be used in many scenarios?

Question: can we design good auctions without knowledge of
prior-distribution?
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Optimal Prior-independent Mechs

Optimal Prior-indep. Mech: (a.k.a., non-parametric implementation)

1. agents report value and prior,

2. shoot agents if disagree, otherwise

3. run optimal mechanism for reported prior.

Discussion:

• complex, agents must report high-dimensional object.

• non-robust, e.g., if agents make mistakes.

• inconclusive, begs the question.
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Resource augmentation

First Approach: “resource” augmentation.
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Resource augmentation

First Approach: “resource” augmentation.

Thm: for iid, regular, single-item auctions, the Vickrey auction on n + 1
bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer ’96]
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Resource augmentation

First Approach: “resource” augmentation.

Thm: for iid, regular, single-item auctions, the Vickrey auction on n + 1
bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer ’96]

Discussion: [Dhangwatnotai, Roughgarden, Yan ’10]

• “recruit one more bidder” is prior-independent strategy.

• “bicriteria” approximation result.

• conclusive: competition more important than optimization.
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Resource augmentation

First Approach: “resource” augmentation.

Thm: for iid, regular, single-item auctions, the Vickrey auction on n + 1
bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer ’96]

Discussion: [Dhangwatnotai, Roughgarden, Yan ’10]

• “recruit one more bidder” is prior-independent strategy.

• “bicriteria” approximation result.

• conclusive: competition more important than optimization.

• non-generic: e.g., for k-unit auctions, need k additional bidders.
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Special Case: n = 1

Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.
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Special Case: n = 1

Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]
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Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

• each bidder in Vickrey views other bid as “random reserve”.
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• each bidder in Vickrey views other bid as “random reserve”.

• Vickrey revenue = 2× random reserve revenue.

• random reserve revenue ≥ 1
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Special Case: n = 1

Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

• each bidder in Vickrey views other bid as “random reserve”.

• Vickrey revenue = 2× random reserve revenue.

• random reserve revenue ≥ 1
2× optimal reserve revenue:

R(q)

0 1
0
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Special Case: n = 1

Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

• each bidder in Vickrey views other bid as “random reserve”.

• Vickrey revenue = 2× random reserve revenue.
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2× optimal reserve revenue:
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Special Case: n = 1

Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

• each bidder in Vickrey views other bid as “random reserve”.

• Vickrey revenue = 2× random reserve revenue.

• random reserve revenue ≥ 1
2× optimal reserve revenue:

R(q)

0 1
0

• So Vickrey with two bidders ≥ optimal revenue from one bidder.
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Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?
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Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution,
post the monopoly price ϕ−1(0). [Myerson ’81]

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
29



Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution,
post the monopoly price ϕ−1(0). [Myerson ’81]

Discussion:

• optimal,

• simple, but

• not prior-independent
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.

Thm: for iid, regular distributions, single sample auction on
(n + 1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan ’10]
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.

Thm: for iid, regular distributions, single sample auction on
(n + 1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan ’10]
Proof: from geometric argument.
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.

Thm: for iid, regular distributions, single sample auction on
(n + 1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan ’10]
Proof: from geometric argument.

Discussion:

• prior-independent.

• conclusive,
– learn distribution from reports, not cross-reporting.

– don’t need precise distribution, only need single sample for
approximation. (more samples can improve approximation/robustness.)

• generic, applies to general settings.
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Extensions

Recent Extensions:

• non-identical distributions. [Dhangwatnotai, Roughgarden, Yan ’10]

• online auctions. [Babaioff, Dughmi, Slivkins WBMD’11]

• position auctions, matroids, downward-closed environments.
[H, Yan EC’11]
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Extensions

Recent Extensions:

• non-identical distributions. [Dhangwatnotai, Roughgarden, Yan ’10]

• online auctions. [Babaioff, Dughmi, Slivkins WBMD’11]

• position auctions, matroids, downward-closed environments.
[H, Yan EC’11]

Open Questions:

• non-downward-closed environments?

• multi-dimensional preferences?
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Questions?



Part IV: Computational Tractability in Bayesian mechanism design

(where the optimal mechanism may be computationally intractable)



Example 5: single-minded combinatorial auction

Problem: Single-minded combinatorial auction

• n agents,

• m items for sale.

• Agent i wants only bundle Si ⊂ {1, . . . ,m}.

• Agent i’s value vi drawn from Fi.

Goal: auction to maximize social surplus (a.k.a., welfare).
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Example 5: single-minded combinatorial auction

Problem: Single-minded combinatorial auction

• n agents,

• m items for sale.

• Agent i wants only bundle Si ⊂ {1, . . . ,m}.

• Agent i’s value vi drawn from Fi.

Goal: auction to maximize social surplus (a.k.a., welfare).

Question: What is optimal mechanism?
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Optimal Combinatorial Auction

Optimal Combinatorial Auction: VCG

1. allocate to maximize reported surplus,

2. charge each agent their “externality”.

BAYESIAN APPROXIMATION MECHANISMS – JUNE 5, 2011
35



Optimal Combinatorial Auction

Optimal Combinatorial Auction: VCG

1. allocate to maximize reported surplus,

2. charge each agent their “externality”.

Discussion:

• distribution is irrelevant (for welfare maximization).

• Step 1 is NP-hard weighted set packing problem.

• Cannot replace Step 1 with approximation algorithm.
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BIC reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?
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BIC reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Challenge: xi(vi) for alg A with v i ∼ F i may not be monotone.
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BIC reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Challenge: xi(vi) for alg A with v i ∼ F i may not be monotone.

Approach:

• Run A(σ1(v1), . . . , σn(vn)).
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BIC reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Challenge: xi(vi) for alg A with v i ∼ F i may not be monotone.

Approach:

• Run A(σ1(v1), . . . , σn(vn)).

• σi calculated from max weight matching on i’s type space.
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BIC reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Challenge: xi(vi) for alg A with v i ∼ F i may not be monotone.

Approach:

• Run A(σ1(v1), . . . , σn(vn)).

• σi calculated from max weight matching on i’s type space.

– stationary with respect to Fi.

– xi(σi(vi)) monotone.

– welfare preserved.
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Example: σi

Example:

f(vi) vi xi(vi)

.25 1 0.1

.25 4 0.5

.25 5 0.4

.25 10 1.0
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Example: σi

Example:

f(vi) vi xi(vi)

.25 1 0.1

.25 4 0.5

.25 5 0.4

.25 10 1.0

σi(vi)

1

5

4

10
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Example: σi

Example:

f(vi) vi xi(vi)

.25 1 0.1

.25 4 0.5

.25 5 0.4

.25 10 1.0

σi(vi)

1

5

4

10

xi(σi(vi))

0.1

0.4

0.5

1.0
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Example: σi

Example:

f(vi) vi xi(vi)

.25 1 0.1

.25 4 0.5

.25 5 0.4

.25 10 1.0

σi(vi)

1

5

4

10

xi(σi(vi))

0.1

0.4

0.5

1.0

Note:

• σi is from max weight matching between vi and xi(vi).

• σi is stationary.

• σi (weakly) improves welfare.
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BIC reduction discussion

Thm: Any algorithm can be converted into a mechanism with no loss in
expected welfare. Runtime is polynomial in size of agent’s type space.

[H, Lucier ’10; H, Kleinberg, Malekian ’11; Bei, Huang ’11]

Discussion:

• applies to all algorithms not just worst-case approximations.

• BIC incentive constraints are solved independently.

• works with multi-dimensional preferences too.
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Extensions

Extension:

• impossibility for IC reduction. [Immorlica, Lucier WBMD’11]
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Extensions

Extension:

• impossibility for IC reduction. [Immorlica, Lucier WBMD’11]

Open Questions:

• non-brute-force in type-space? e.g., for product distributions?

• other objectives, e.g., makespan?
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Questions?



Workshop Overview

11:30-12:20: Online, prior-independence, and tractability:

• Detail-free, Posted-Price Mechanisms for Limited Supply Online
Auctions . . . . . . . . . . . . . . . . . . . . . . . . by Babaioff, Dughmi, and Slivkins

• On the Impossibility of Black-Box Truthfulness without Priors . . . .by
Immorlica and Lucier

2:00-3:40: Multi-dimensional approximation and computation:

• Approximating Optimal Combinatorial Auctions for Complements
Using Restricted Welfare Maximization . . . . by Tang and Sandholm

• Extreme-Value Theorems for Optimal Multidimensional Pricing . . by
Cai and Daskalakis

• Bayesian Combinatorial Auctions: Expanding Single Buyer
Mechanisms to Many Buyers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by Alaei

• On Optimal Multi-Dimensional Mechanism Design
by Daskalakis and Weinberg
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Workshop Overview

4:10-5:30: Bayes-Nash mechanism design:

• Strongly Budget-Balanced and Nearly Efficient Allocation of a
Single Good
by Cavallo

• Optimality versus Practicality in Market Design: A Comparison of
Two Double Auctions
by Satterthwaite, Williams, and Zachariadsi

• Crowdsourced Bayesian Auctions by Azar, Chen, and Micali
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